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Abstract

We demonstrate that substrate uptake kinetics in any consumer-substrate network
subject to the total quasi-steady-state assumption can be formulated as an equilib-
rium chemistry (EC) problem. If the consumer-substrate complexes equilibrate much
faster than other metabolic processes, then the relationships between consumers, sub-5

strates, and consumer-substrate complexes are in quasi-equilibrium and the change of
a given total substrate (free plus consumer-bounded) is determined by the degrada-
tion of all its consumer-substrate complexes. In this EC formulation, the corresponding
equilibrium reaction constants are the conventional Michaelis–Menten (MM) substrate
affinity constants. When all of the elements in a given network are either consumer10

or substrate (but not both), we derived a first-order accurate EC approximation (ECA).
The ECA kinetics is compatible with almost every existing extension of MM kinetics.
In particular, for microbial organic matter decomposition modeling, ECA kinetics ex-
plicitly predicts a specific microbe’s uptake for a specific substrate as a function of the
microbe’s affinity for the substrate, other microbes’ affinity for the substrate, and the15

shielding effect on substrate uptake by environmental factors, such as mineral surface
adsorption.

By taking the EC solution as a reference, we evaluated MM and ECA kinetics for
their abilities to represent several differently configured enzyme-substrate reaction net-
works. In applying the ECA and MM kinetics to microbial models of different com-20

plexities, we found (i) both the ECA and MM kinetics accurately reproduced the EC
solution when multiple microbes are competing for a single substrate; (ii) ECA outper-
formed MM kinetics in reproducing the EC solution when a single microbe is feeding
on multiple substrates; (iii) the MM kinetics failed, while the ECA kinetics succeeded,
in reproducing the EC solution when multiple consumers (i.e., microbes and mineral25

surfaces) were competing for multiple substrates. We then applied the EC and ECA
kinetics to a guild based C-only microbial litter decomposition model and found that
both approaches successfully simulated the commonly observed (i) two-phase tempo-
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ral evolution of the decomposition dynamics; (ii) final asymptotic convergence of the
lignocellulose index to a constant that depends on initial litter chemistry and microbial
community structure; and (iii) microbial biomass proportion of total organic biomass
(litter plus microbes). In contrast, the MM kinetics failed to realistically predict these
metrics. We therefore conclude that the ECA kinetics is more robust than the MM ki-5

netics in representing complex microbial, C substrate, and mineral surface interactions.
Finally, we discuss how these concepts can be applied to other consumer-substrate
networks.

1 Introduction

Many natural systems involve processes that can be modeled as consumer-substrate10

(or consumer-resource in a broader context) interactions. These interactions include,
but are not limited to: (i) multicomponent adsorption in aqueous chemistry (e.g., Jen-
nings et al., 1982; Choy et al., 2000); (ii) aerosol and cloud droplet interactions in atmo-
spheric chemistry (e.g., Pilinis et al., 1987; Jacobson et al., 1996); (ii) protein interaction
networks in molecular biology (e.g., Childs and Bardsley, 1974; Ciliberto et al., 2007);15

and (iv) many more in natural ecosystems, such as plant-microbe competition for in-
organic nitrogen and phosphorus (e.g., Reynolds and Pacala, 1993; Lambers et al.,
2009), plant competition for light (e.g., Dybzinski et al., 2011), microbial competition
for carbon substrates and mineral nutrients (e.g., Caperon, 1967; Moorhead and Sins-
abaugh, 2006; Allison, 2012; Bouskill et al., 2012), algae competition for mineral nutri-20

ents (e.g., Tilman, 1977; Follows et al., 2007), and predator competition for prey (e.g.,
Holling, 1959a; Arditi and Ginzburg, 1989; Ginzburg and Akcakaya, 1992; Vayenas and
Pavlou, 1999; Abrams and Ginzburg, 2000; Koen-Alonso, 2007). Because of this preva-
lence of consumer-substrate interactions in natural systems, particularly in ecosystem
dynamics, many mathematical developments have been proposed to interpret and pre-25

dict ecosystem behavior under a wide range of environmental and biological conditions
(e.g., Lotka, 1923; Volterra, 1926; Holling, 1959b; Campbell, 1961; Murdoch, 1973;
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Williams, 1973; Tilman, 1977; Pasciak and Gavis, 1974; Persson et al., 1998; Maggi
et al., 2008; Bonachela et al., 2011; Bouskill et al., 2012). In this study, we present de-
velopments focusing on the consumer-substrate network that regulates organic matter
decomposition. However, our results should be applicable to any problem that can be
similarly formulated as a consumer-substrate network.5

In general, the growth of any biological organism minimally involves two steps: (i)
substrate uptake and (ii) substrate assimilation. Once a substrate is captured, it is as-
similated to produce energy and biomass for a series of metabolic processes, including,
but not limited to, cell maintenance, enzyme production, cell division, and reproduction.
Therefore, explicit modeling of the interactions between many consumers, substrates,10

and their habitats requires a consistent mathematical representation of substrate up-
take under a wide range of biotic and abiotic conditions. Among the many existing sub-
strate uptake kinetics (Hill, 1910; Michaelis and Menten, 1913; Burnett, 1954; Holling,
1959b; Cleland, 1963), the Michaelis–Menten (MM) kinetics (or equivalently Monod
(Monod, 1949) or Holling’s type II (Holling, 1959b) kinetics) is the most widely applied15

because of its simple form, solid theoretical foundation (e.g. Liu, 2007), and successes
under a wide range of conditions (e.g., Holling, 1959b; Tilman, 1977; Reynolds and
Pacala, 1993; Legovic and Cruzado, 1997; Hall, 2004; Kou, 2005; Riley and Matson
2000; Maggi et al., 2008; Allison, 2012).

In their seminal paper, Michaelis and Menten (1913) assumed that enzymes and20

substrates adsorb to each other to form enzyme-substrate complexes. By assuming the
enzyme-substrate complex is of a much lower concentration than that of the substrate,
they obtained, by law of mass actions, the so-called MM kinetics, which states

v =
VmaxS
KS +S

(1)

where v (mols−1) is the substrate uptake rate, Vmax (mols−1) is the maximum substrate25

uptake rate, KS (molm−3) is the half saturation (or substrate affinity) constant, and S
(molm−3) is the free substrate concentration (a full list of symbols is given at the end of
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the text). Later, Briggs and Haldane (1925) derived Eq. (1) from the enzyme-catalyzed
reaction:

S +E
k+1↔
k−1

C
k+2→ P +E (2)

where E (molm−3) is (free) enzyme, C (molm−3) is enzyme-substrate complex from
binding (free) substrate S to enzyme E , P is the product (molm−3) resulting from5

the irreversible part of reaction (2), k+1 (m3 mol−1 s−1) and k+2 (s−1) are forward reac-
tion coefficients, k−1 (s−1) is the backward reaction coefficient, and KS =

(
k−1 +k+2

)
/k+1 .

Later studies (e.g., Segel and Slemrod, 1989; Schnell and Maini, 2000) indicated that
Eq. (1) was obtained with the standard quasi-steady-state assumption (sQSSA), which
states that dC

dt ≈ 0 and dS
dt = −k+1 SE +k−1 C (note that dS

dt is the changing rate of the10

free substrate, which is different from the total substrate being used in the total quasi-
steady-state assumption (tQSSA) to be introduced later). Equation (1) is valid only
when S+KS � ET, where ET is the total enzyme concentration including both free and
substrate-bound.

The MM kinetics has been successful in many applications, but there are also many15

studies demonstrating that modifications must be made to account for discrepancies
between predictions from applying Eq. (1) and observations (e.g., Cha and Cha, 1965;
Williams, 1973; Suzuki et al., 1989; Maggi and Riley, 2009; Druhan et al., 2012). For
instance, Cha and Cha (1965), in studying cyclic enzyme systems, noticed that the
substrate uptake kinetics, when approximated with first order accuracy, should be20

v =
VmaxST

KS +ET +ST
(3)

Others have obtained Eq. (3), or a similar form, for various problems (e.g., Reiner,
1969; Segel, 1975; Schulz, 1994; Borghans and De Boer, 1995; Borghans et al., 1996;
Schnell and Maini, 2000; Wang and Post, 2013). In particular, Borghans et al. (1996),
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using the total quasi-steady-state approximation (tQSSA; which also assumes dC
dt ≈ 0,

but defines a total substrate ST = S +C and uses dST
dt = −k+2 C), showed Eq. (3) is valid

if k+2 ET � k+1 (KS +ET +ST)2.
Equation (3) is of good accuracy for a much wider range of substrate and enzyme

concentrations than Eq. (1). It also alleviates the problem that v →∞ as ET →∞ if5

Eq. (1) is used (note Vmax ∝ ET). In addition, when applied to predator-prey systems
(i.e., predator= E , prey= S), Eq. (3) predicts predation depends on both (i) the ratio
between predator and prey density and (ii) prey density. While we have not found an
example in the literature of Eq. (3) being evaluated with predation data, a few studies
(e.g., Vucetich et al., 2002; Schenk et al., 2005) indicated the predation rate is not only10

ratio dependent as proposed in Arditi and Ginzburg (1989), nor only density dependent
as implied by MM kinetics.

Extension of the MM kinetics to more general cases such as (i) one enzyme (hence-
forth, without loss of generality, we use enzymes as the consumers) competing for
multiple substrates (Schnell and Mendoza, 2000; Koen-Alonso, 2007; Maggi and Ri-15

ley, 2009), (ii) multiple enzymes competing for one substrate (Suzuki et al., 1989; De
Boer and Perelson, 1995; Grant et al., 1993), and (iii) many enzymes interacting with
many substrates (De Boer and Perelson, 1994; Ciliberto et al., 2007). Though the most
general case (iii) has been attempted in various contexts, we are not aware of any
analytical representation presented in the literature.20

An analytically and computationally tractable formulation for case (iii) mentioned
above is practically important to solve many problems, such as trait-based modeling
of microbial ecosystems (Follows et al., 2007; Allison, 2012; Bouskill et al., 2012) and
complicated trophic networks (Lindeman, 1942). Since, in a trophic network, a preda-
tor’s predation on a prey can be practically considered as a random pairing process25

between the predator and prey, and the feeding process is just the conversion of a prey
into internal biomass of the predator (e.g., Caperon, 1967), the uptake and assimilation
of a substrate in a predator-prey system can thus be analogically described by Eq. (2),
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with the predator’s rates of prey foraging, prey escape, and prey handling (i.e., activities
like killing and eating) described, respectively, by parameters k+1 , k−1 , and k+2 .

Trait-based modeling of a general microbial ecosystem is different than that of
a trophic network due to the unavoidable interactions between substrates and the aque-
ous chemical environment. Particularly, the soil microbial ecosystem is further com-5

plicated by substrate interactions with various adsorption surfaces (e.g., mineral sur-
faces and biochar). Existing approaches often model the interactions between micro-
bial substrate uptake and aqueous chemistry and mineral surface interactions in sep-
arate steps, while ignoring the mathematical similarities between microbial substrate
uptake, aqueous chemistry, and mineral surface interactions (e.g., Maggi et al., 2008;10

Gu et al., 2009). Interestingly, Michaelis and Menten (1913) recognized that Eq. (1)
could be derived from the law of mass action by assuming equilibrium between the
formation and degradation of the enzyme-substrate complexes (though a formal math-
ematical treatment was done by Briggs and Haldane, 1925). In their study, Michaelis
and Menten also considered a single enzyme that could bind with three different sub-15

strates and obtained a modified substrate uptake function under the assumption of
negligible enzyme-substrate complex concentration compared to substrates. There-
fore, the apparent mathematical equivalence between the enzyme-substrate binding
process and that of the chemical interaction between mineral (or organic) surfaces and
aqueous chemical species, where the latter can usually be described as being in equi-20

librium (e.g., Jennings, 1982), should provide a framework to model the biotic substrate
uptake kinetics and abiotic chemistry simultaneously. If such a framework can be iden-
tified, it will consistently describe the substrate uptake by a microbe (or a consumer
in a broader definition) as a function of the microbe’s traits, traits of other microbes,
and the impacts from different abiotic environmental factors. Such a framework will fit25

well with the idea of game theory (that is often used to describe biological evolution-
ary systems), which states “the fitness of an individual is simultaneously influenced by
its own strategy, the strategies of others, and other features of the abiotic and biotic
environment” (McGill and Brown, 2007).
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In this study, we propose a general approach to modeling a consumer-substrate net-
work that has an arbitrary but finite number of consumers and substrates, and present
its analytical approximations under some simplified conditions. We organize the paper
as follows: Sect. 2 presents the theoretical aspects of our approach and the design of
illustrative numerical experiments to evaluate our approach and an application to the5

modeling of microbial litter decomposition; Sect. 3 presents relevant results and dis-
cusses the limitations and potential applications of our developments; finally, Sect. 4
summarizes the major findings from this study.

2 Methods

In this section, we first derive the full Equilibrium Chemistry (EC) formulation of the10

consumer-substrate network and its analytical approximation (ECA) that is at best first
order accurate. We then describe illustrative numerical experiments that are used to
evaluate the classical MM kinetics and the ECA kinetics in modeling complex transient
consumer-substrate networks, including a simple model exercise of the microbial litter
decomposition problem.15

2.1 An equilibrium chemistry based formulation of consumer-substrate
networks

We consider here enzymes as the consumers in our consumer-substrate network, so
that our derivation is based on enzyme kinetics. However, the substrate uptake kinetics
in other systems can be represented analogously as long as the following assumptions20

hold: (i) consumers and substrates are well mixed in their environment; (ii) consumers
and substrates only exist in free and complexed states (which could broadly include or-
ganic and inorganic chemical adsorption, and even engagement in social activities for
predator-prey systems); and (iii) the equilibration between formation and degradation
of consumer-substrate complexes is much faster than the change of total substrates25
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(free plus complexed) and total enzymes (free plus complexed) due to all possible
biotic and abiotic sinks and sources. Assumption (i) is commonly made in environ-
mental biogeochemistry, although it can be violated at small scales (e.g., Molins et al.,
2012) or under water-stressed conditions where substrates can become disconnected
from consumers (e.g., Schimel et al., 2011). All consumer-substrate networks typically5

satisfy assumption (ii). A rigorous proof is still lacking for assumption (iii), but Kumar
and Josie (2011) showed with mathematical rigor that it holds well for some special
consumer-substrate networks, Ciliberto et al. (2007) showed it worked well for protein-
protein interactive networks, and the MM kinetics (which also applies assumption (iii))
has demonstrated its success in numerous cases (but MM kinetics fails for some cases10

such as isotopic fractionation (Maggi and Riley, 2009; Druhan et al., 2012)). However,
Maggi and Riley (2009) concluded that if assumption (iii) was paired with the sQSSA,
the resultant substrate kinetics failed to describe the isotopic fractionation at high en-
zyme concentrations.

With these three assumptions, we consider an enzyme (Ej , j = 1, . . .,J) catalyzed15

reaction that converts a substrate (Si , i = 1, . . ., I) into a final product Pi j :

Si +Ej
k+i j ,1↔
k−i j ,1

Ci j
k+i j ,2→ Ej + Pi j (4)

where k+i j ,1 (m3 mol−1 s−1) and k+i j ,2 (s−1) are reaction coefficients for the forward reac-

tions, k−i j ,1 (s−1) is the reaction coefficient for the reverse reactions, and Ci j (molm−3)
is the enzyme-substrate complex formed by binding Si with Ej .20

Under the sQSSA (also the tQSSA), Ci j is constant during a modeling (or measure-
ment) time step (Michaelis and Menten, 1913), which leads to

SiEjk
+
i j ,1 =

(
k−i j ,1 +k

+
i j ,2

)
Ci j (5)
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and can be rewritten as

KS,i j =
k−i j ,1 +k

+
i j ,2

k+i j ,1
=
SiEj
Ci j

(6)

Therefore, Eq. (5) describes the following chemical equilibrium:

Si +Ej
KS,i j↔ Ci j (7)

By taking the remaining procedures to obtain the MM kinetics, it can be shown that KS,i j5

(molm−3) is just the substrate affinity (or half saturation) constant. Note, as KS,i j →∞,
the complexation between substrate Si and enzyme Ej becomes increasingly difficult.

For a reaction network that involves many substrates and enzymes, one can write
a chemical equilibrium for each reaction in the form of Eq. (7). Therefore, the reaction
network can be viewed as an equilibrium chemistry (EC) problem, which have been10

intensively studied in atmospheric aerosol chemistry (Pilinis et al., 1987; Jacobson
et al., 1996; Jacobson, 1999) and reactive transport modeling (e.g., Jennings et al.,
1982). This EC formulation enables one to use existing software, such as MINTEQ
(Felmy et al., 1984), SOILCHEM (Sposito and Coves, 1988), and EQUISOLV (Ja-
cobson, 1999), to solve for all the substrate-enzyme complexes and then apply the15

equation

dPi j
dt

= k+i j ,2Ci j (8)

to compute the production rate of Pi j from processing of substrate Si by enzyme Ej .
Under the sQSSA, the change of a free substrate Si due to the degradation of all its

relevant enzyme-substrate complexes is:20

dSi
dt

= −
k=J∑
k=1

(
k+ik,1SiEk −k

−
ik,1Cik

)
(9)
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Under the tQSSA (Borghans et al., 1996), one defines

Si ,T = Si +
k=J∑
k=1

Cik , i = 1, . . ., I (10)

and then, by combing Eqs. (6), (9) and (10), one obtains

dSi ,T
dt

= −
k=J∑
k=1

k+ik,2Cik (11)

We then obtain the full EC formulation by combining Eqs. (6), (11), and the enzyme5

mass balance:

Ej ,T = Ej +
k=I∑
k=1

Ckj , j = 1, . . .,J (12)

We note that if k+i j ,2 = 0, then the complex formed with enzyme Ej effectively becomes
a shelter for any substrate it can bind to. This constraint allows us to quantify the im-
pact of different adsorption surfaces (e.g., mineral surfaces and biochar) on microbial10

substrate uptake in a consumer-substrate network. Further, with the great flexibility
provided by the EC formulation (Jennings et al., 1982; Jacobson, 1999), one could si-
multaneously simulate biotic and abiotic interactions for arbitrarily complex networks,
subjected to computational resource constraints. In addition, we note that the develop-
ment by Cleland (1963) and the binding strategy in the synthesizing unit approach by15

Kooijman (1998) are just special cases of the EC formulation.
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2.2 An at-best first-order accurate analytical approximation to the equilibrium
chemistry based formulation for some special consumer-substrate
networks

If a consumer-substrate network satisfies two conditions: (i) binding does not occur
between substrates or between consumers; and (ii) a consumer-substrate complex,5

once formed, does not bind with another substrate or consumer to form new complexes,
we find an at-best first-order accurate equilibrium chemistry approximation (ECA) (see
appendix A for derivation details):

Ci j =
Si ,TEj ,T

KS,i j

(
1+
∑k=I
k=1

Sk,T

KS,kj
+
∑k=J
k=1

Ek,T

KS,ik

) (13)

where we have assumed the reaction network includes I substrates and J enzymes10

(a visualizing way to write Eq. 13 is shown in Fig. 1). By combining Eq. (11) with
Eq. (13), this ECA kinetics states that the uptake of substrate Si by consumer Ej de-
pends on (i) the characteristics of the consumer and substrate of interest (through
KS,i j ) and (ii) the characteristics of abiotic and biotic interactions with other substrates
and consumers (through KS,kj and KS,ik). In particular, when applied to predator-prey15

systems, the ECA kinetics indicates that predation rate is neither ratio nor density de-
pendent, a problem that is yet still under debate (Arditi and Ginzburg, 1989; Abrams,
2000; Vucetich et al., 2002; Schenk et al., 2005; Kratina et al., 2009). Next, we derive
a few interesting results from Eq. (13).

First, for a reaction that has only one enzyme interacting with one substrate, we have20

C11 =
S1,TE1,T

KS,11 +S1,T +E1,T
(14)

which is equivalent to Eq. (3). When the substrate concentration is much higher than
the enzyme concentration, such that the microbial process barely changes the total
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substrate concentration in the temporal window of interest, KS,11 +S1,T is almost con-
stant, and Eq. (14) becomes the reverse MM kinetics (Schimel and Wintraub, 2003).
When the substrate is changing significantly while the overall enzyme concentration
is much lower than the substrate, so that KS,11 +E1,T is almost constant, Eq. (14) is
reduced to the classical MM kinetics (Michaelis-Menten, 1913).5

Second, when enzyme concentrations are very high, more inactive enzymes (e.g.,
transporters of dead cells) will compete with the active enzymes for substrate adsorp-
tion, consequently introducing an inhibition. By treating the active and inactive fractions
of an enzyme as two different enzymes, Eq. (14) can be reformulated as

C11 =
S1,TE1,T

S1,T +KS,11

(
1+

E1,T

KS,11
+

E2,T

KS,12

) (15)10

where E1,T (molm−3) and E2,T (molm−3) are the total concentrations of the active
and inactive enzymes, respectively. By taking α1 as the transient partitioning co-
efficient between active and inactive enzyme concentrations (i.e., E1,T = α1ET and
E2,T = (1−α1)ET, with ET = E1,T +E2,T), Eq. (14) can be rewritten as

C11 =
α1S1,TET

S1,T +KS,11

[
1+
(

α1
KS,11

+ 1−α1
KS,12

)
ET

] = α1S1,TET

S1,T +KS,11

(
1+ ET

KI

) (16)15

where KI =
(

α1
KS,11

+ 1−α1
KS,12

)−1
and the term after the second equal sign is equivalent to

Eq. (2) derived in Suzuki et al. (1989), where they used it to explain the inhibition effect
from ineffective binding between substrate and inactive cells. We point out that Eq. (16)
could be used to represent the inhibition effect from soil minerals, which can compete
for substrates analogously as an ineffective enzyme (that does not results in a new20

chemical product but may protect the substrates from microbial attack).
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Third, for the case of many enzymes competing for a single substrate, Eq. (13) can
be reduced to

C1j =
S1,TEj ,T

KS,i j

(
1+
∑k=J
k=1

Ek,T

KS,ik

)
+S1,T

(17)

Grant et al. (1993) used a variant of Eq. (17) to represent the competitive uptake of
a substrate in the presence of many microbes (see their Eqs. 3 and 4). However, Grant5

et al. (1993) directly generalized the results by Suzuki et al. (1989) (without explicit
derivation) and also implicitly assumed that there are ineffective enzymes competing
for substrates. With this latter assumption, Eq. (17) can rewritten as

C1j =
αjS1,TEj ,T

KS,i j

(
1+
∑k=J
k=1

Ek,T

KI ,1k

)
+S1,T

(18)

where αj is the transient active fraction of enzyme Ej and the inhibition constants are10

KI ,1k =
(
αk

KS,1k
+

1−αk

KS,1k,d

)−1

(19)

where KS,1k and KS,1k,d are affinity constants of the active and inactive enzyme Ek ,
respectively. Note that the value of J in Eq. (18) is half of that in Eq. (17) since Eq. (18)
groups the active and inactive fractions of an enzyme into one.

Fourth, in the case of a single enzyme interacting with many substrates, Eq. (13) is15

reduced to

Ci1 =
Si ,TE1,T

KS,i1

(
1+
∑k=I
k=1

Si ,T
KS,k1

)
+E1,T

(20)

10628

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/10615/2013/bgd-10-10615-2013-print.pdf
http://www.biogeosciences-discuss.net/10/10615/2013/bgd-10-10615-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 10615–10683, 2013

Network-based
substrate kinetics

J. Y. Tang and W. J. Riley

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

When E1,T is constant, Eq. (20) can be equivalently rewritten as

Ci1 =
Si ,TE1,T

K̂S,i1

(
1+
∑k=I
k=1

Si ,T
K̂S,k1

) (21)

where K̂S,i1 = KS,i1 +E1,T and K̂S,ik = KS,ik for k = 2, · · ·, I . If further assuming K̂S,i1 �
E1,T, such that K̂S,i1 = KS,i1, then Eq. (21) is just the multicomponent Langmuir isotherm
for multicomponent adsorption in aqueous chemistry (e.g., Choy et al., 2000) and has5

been used for multi-prey predation in predator-prey models (e.g., Murdoch, 1973). We
also note the multicomponent Langmuir isotherm is based on sQSSA.

If there are only two substrates (i.e., I = 2), Eq. (20) can be rewritten as

C11 =
S1,TE1,T/KS,11

1+
S1,T

KS,11
+

S2,T

KS,21
+

E1,T

KS,11

(22-a)

C21 =
S2,TE1,T/KS,21

1+
S1,T

KS,11
+

S2,T

KS,21
+

E1,T

KS,21

(22-b)10

Then by further assuming E1,T/KS,11and E1,T/KS,21 are much smaller than the other
terms, one obtains the Eq. (20) in Maggi and Riley (2009). Druhan et al. (2012) have
used Eq. (20) by Maggi and Riley (2009) to explain sulfur isotope fractionation in a field
subsurface acetate amendment experiment. Our Eq. (22) are based on the tQSSA,15

which makes them valid for a wider range of substrate and enzyme concentrations.
This contrasts our Eq. (22) with Maggi and Riley’s Eq. (20), which are based on the
sQSSA, and was found to incorrectly predict isotopic fractionations when enzyme con-
centrations were comparable or higher than substrate concentrations.
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2.3 Extension to other inhibitory mechanisms

The EC and ECA kinetics inherently account for competitive inhibition (inhibition mech-
anism (i)), including product competitive inhibition. For enzyme kinetics or, more
broadly, microbe-substrate networks, there are three additional main inhibitory mecha-
nisms often considered (Cornish-Bowden, 1995): (ii) uncompetitive inhibition (inhibitor5

binds to the enzyme-substrate complex to make the binding ineffective); (iii) non-
competitive inhibition (inhibitor binds equally well to both free enzyme and enzyme-
substrate complexes and reduces the number of effective bindings but does not affect
the enzyme’s substrate affinity); and (iv) mixed inhibition (a mixture of competitive and
non-competitive inhibition, but the inhibitor has different affinity for free enzyme and the10

enzyme-substrate complex).
The EC kinetics is compatible with all these four inhibitory mechanisms, as long as

the reaction coefficients can be properly defined for all the inhibitor binding equations.
However, the simplified ECA kinetics is only able to represent competitive and non-
competitive inhibition (with some modifications discussed below). Including mixed and15

non-competitive inhibition is only possible when many substrates are competing for
a single enzyme or vice versa (and the relevant mathematics is much more compli-
cated than we have presented for competitive and non-competitive inhibitions here). In
addition, as will be demonstrated later (see the numerical experiments), even the ECA
kinetics without inhibitory mechanisms (ii), (iii), and (iv) are not always highly accurate20

(compared to EC kinetics), nor can they be calibrated robustly due to parameterization
equifinality (i.e., different combinations of parameters can result in very similar model
predictions; e.g., Beven, 2006; Tang and Zhuang, 2008). Since including these other
inhibitory mechanisms (beside competitive inhibition) will generally introduce more pa-
rameters, making the simulations more uncertain, the gain in mechanistic representa-25

tion is thus smaller than the loss of predictive capability.
Nevertheless, a first order approximation for the non-competitive inhibition can be

achieved by, first, modifying the substrate affinity coefficients (used in Eq. 13) that are
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subject to the inhibitors Ik ,k = 1, . . .,L as:

K̃S,i j =
KS,i j∑k=L

k=1
Ik,T

KI,i jk
+1

(23)

where KI,i jk ,k = 1, . . .,L are the inhibition coefficients of each inhibitor on enzyme-
substrate complex Ci j . In deriving Eq. (23) we assume that any two inhibitors cannot
bind simultaneously to an enzyme-substrate complex.5

Second, substituting the modified substrate affinity coefficients K̃S,i j into Eq. (13),
one obtains the enzyme-substrate complex concentration (under the influence of non-
competitive inhibition):

C̃i j =
Si ,TEj ,T

KS,i j

(
1+
∑k=I
k=1

Sk,T

K̃S,kj
+
∑k=J
k=1

Ek,T

K̃S,ik

) (24)

2.4 Linking with microbial traits10

An appealing application of the EC and ECA kinetics is to trait-based modeling of
marine and soil microorganisms (Follows et al., 2007; Litchman et al., 2007; Allison,
2012; Bouskill et al., 2012). In the trait-based modeling approach, parameters of the
substrate uptake kinetics are determined by the microorganisms’ traits, such as cell
size and transporter density (e.g., Follows et al., 2007; Armstrong, 2008; Bonachela15

et al., 2011). Both the EC and ECA kinetics are compatible with such concepts, and
the incorporation of these traits can be accomplished efficiently through the dynamic
update of relevant microbial state variables in the numerical model. For instance, to
consider the effect of cell size (which affects substrate diffusion between the environ-
ment and the cell) and transporter density (which affects processing rate and affinity20

to the substrate) on substrate uptake, one has the updated substrate uptake diagram
shown in Fig. 2. With the stationary flux assumption (Pasciak and Gavis, 1974, 1975),

10631

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/10615/2013/bgd-10-10615-2013-print.pdf
http://www.biogeosciences-discuss.net/10/10615/2013/bgd-10-10615-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 10615–10683, 2013

Network-based
substrate kinetics

J. Y. Tang and W. J. Riley

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

one obtains the diffusive flux to a spherical cell as ΦD = 4πDi rc,jnj
(
Si − S̃i

)
, where Di

(m2 s−1) is the diffusivity of the substrate Si in water (when in soil, this diffusivity de-
pends on soil matric potential, soil structure, and temperature), rc,j (m) is the average
size of cell j (by assuming a spherical cell shape in the first order approximation), and
nj (number of cellsm−3) is the number density of cell j . The impact of advection on the5

flux ΦD can also be included using the dimensionless Sherwood number (Karp-Boss
et al., 1996), but that will not change our derivation essentially. Further assuming the
internal substrate S̃i concentration (that is close to the cell) is also stationary (thus ΦD
is equal to the net enzyme-substrate complex formation rate between S̃i and the cell’s
transporter), one obtains (as a first order approximation)10

S̃i =
4πDi rc,jnjSi

k+i j ,1Ej +4πDi rc,jnj
≈

4πDi rc,jnjSi
k+i j ,1Ej ,T +4πDi rc,jnj

(25)

where we have assumed the reverse dissociation of the enzyme-substrate complex
(k−i j ,1) is negligible, Ej ≈ Ej ,T, and the changing rate of the enzyme (or transporter)
abundance due to new growth is much slower than the enzyme-substrate complex
equilibration rate. Therefore, one can represent the enzyme-substrate complex with15

Eq. (7) and a modified equilibrium coefficient:

K̃S,i j =
k−i j ,1 +k

+
i j ,2

k+i j ,1

(
1+

k+i j ,1Ej ,T
4πDi rc,jnj

)
(26)

which leads to a new representation of the substrate affinity parameter for Eq. (13) as

K̃S,i j = KS,i j

(
1+

k+i j ,1Ej ,T
4πDi rc,jnj

)
(27)
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Under the assumption that k−i j ,1 � k+i j ,2 and defining Vmax,i j = k
+
i j ,2Ej ,T, one has

K̃S,i j = KS,i j

(
1+

Vmax,i j

4πDi rc,jnjKS,i j

)
(28)

which extends the modified MM kinetics derived for a single enzyme single substrate
system (Bonachela et al., 2011) to an enzyme-substrate network of arbitrary size.

Equation (28) implies that if a cell increases its volumetric transporter density5

(Ej ,T/nj ; transporters per cell), it decreases its substrate affinity. However, considering

Ej ,T = njψj4πr
2
c,j , if a cell j decreases its volumetric size while keeping the same area-

based transporter density ψj (transportersm−2), it can increase its substrate affinity.
Further, by substitution of Eq. (27) or Eq. (2.5) into Eq. (13), one obtains a new rep-
resentation of the moisture effect on organic matter decomposition (through diffusivity10

Dj and aqueous substrate concentration Si ) that is more mechanistic than the usually
applied simple multiplier factors (e.g., Andren and Paustian, 1987; Rodrigo et al., 1997;
Bauer et al., 2008; Parton et al., 1988).

2.5 Evaluation of the ECA kinetics and the classical MM kinetics

We focus our evaluation on the efficacy of the ECA (Eq. 13) and the MM kinetics (Ap-15

pendix C) in approximating predictions by the EC kinetics, and leave the analysis of the
impact of the EC and ECA kinetics on trait-based modeling (Eq. 27) for future studies.
In these comparisons, we used the EC kinetics as a baseline to predict the enzyme-
substrate complexes involved in a reaction network with arbitrary number of enzymes
and substrates. We implemented the EC kinetics with the analytical equilibrium iteration20

(AEI; Jacobson, 1999) and then compared its predictions to those from the classical
MM kinetics and the ECA kinetics for different network configurations. We conducted
the evaluation with three groups of experiments: (E1) random sampling; (E2) appli-
cations to simple microbial models of different complexities; and (E3) simulating litter
decomposition with different carbon-only model.25
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In the first group of experiments (E1; random sampling), we tested the hypothesis
that our ECA kinetics is more accurate than the MM kinetics for arbitrary consumer-
substrate networks. Specifically, we randomly generated substrate affinity parameters
using an exponential distribution over the relative range 1–104 (molm−3), which is suffi-
ciently wide to represent the range of microorganisms in the natural environment (e.g.,5

Wang et al., 2012). The enzymes and substrate concentrations were then generated
from the least informative uniform distribution U [0,1]. We performed 9 scenarios us-
ing combinations of three substrate-enzyme (SE) ratios (10, 1, and 0.01) and three
network sizes (60 substrates and one enzyme, 10 substrates and 60 enzymes, and
20 substrates and 20 enzymes). Each scenario has 10 random replicates, resulting in10

a total of 9×10 = 90 evaluations. We normalized the variance of the EC solution for
each replicate of the 9 scenarios, and summarized the results using the Taylor diagram
(Taylor, 2001), which simultaneously presents the correlation coefficient and root mean
square error between the baseline EC solution and solutions using MM or ECA kinet-
ics. Since the equilibrium reaction Eq. (7) is symmetric to represented substrates and15

enzymes, the 9 scenarios effectively represent 18 different enzyme-substrate networks
(e.g., 10 substrates and 60 enzymes is equivalent to 60 substrates and 10 enzymes).

In the second group of experiments (E2; simple microbial models of different com-
plexities), we used the following generic model structure to illustratively evaluate the
impact of different substrate kinetics on microbial system dynamics:20

dSi
dt

= −
j=J∑
j=1

k+i j ,2Ci j , i = 1, . . ., I (29)

dBj
dt

=
i=I∑
i=1

µi jk
+
i j ,2Ci j −γjBj , j = 1, . . ., (30)

where µi j (unitless) is the biomass yield rate of microbe Bj (mgCdm−3) from feeding

on substrate Si ; and γj (day−1) is respiration rate, which is defined accordingly (in the25

10634

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/10615/2013/bgd-10-10615-2013-print.pdf
http://www.biogeosciences-discuss.net/10/10615/2013/bgd-10-10615-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 10615–10683, 2013

Network-based
substrate kinetics

J. Y. Tang and W. J. Riley

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

captions of the relevant parameter tables) for different models. We computed Ci j using
EC kinetics, MM kinetics (Appendix C), and ECA kinetics (Eq. 13) and evaluated the
ability of the two analytical approximations to reproduce the temporal dynamics simu-
lated by the EC kinetics. We considered four microbial models of different complexities
(Tables 1, 2, and 3; note the fourth model assigned different units to the variables com-5

pared to the other three models in order to use the parameters from Moorhead and
Sinsabaugh, 2006): (i) three substrates and one microbe (S3B1); (ii) three substrates,
one microbe, and one mineral surface (S3B1M1); (iii) one substrate and five microbes
(S1B5); and (iv) three microbes and three substrates (S3B3). For the three models with
three substrates (S3B1, S3B1M1, and S3B3) we related the substrates to water-soluble10

carbon, cellulose, and lignin, respectively. Since the results from (E2) are applicable to
other similar problems, we labeled the three substrates as S1, S2, and S3. For model
S1B5, we ran the model with different kinetics using 20 randomly generated parameter
sets, and evaluated their performance by the relative model error

err (t) =
3
N

i=N∑
i=1

∣∣∣∣∣ yi ,EC (t)− yi ,app (t)

yi ,EC (t)+ yi ,MM (t)+ yi ,ECA (t)

∣∣∣∣∣ (31)15

where N = 6, the number of model state variables, and app refers to MM or ECA. The
above metric avoids division by zero as long as the model difference is non-zero.

For all models (including S1B5), we specified the relevant parameter values ran-
domly, but kept their nominal values in the ranges documented in the literature (for
microbial parameters, see Li et al., 1992; Allison et al., 2010; Wang et al., 2012; for20

mineral adsorption parameters, see Mayes et al., 2012). As an extra comparison, we
also included the multicomponent Langmuir isotherm (i.e., Eq. 21, which we notate as
ECA-ML) to compute the substrate uptake in models S3B1, S3B1M1, and S3B3. Since
ECA-ML can be derived based on sQSSA and it assumes enzyme concentrations are
much lower than the substrate concentrations, comparing its performance with that by25

ECA and EC will reveal the advantage of tQSSA in representing networks with high
enzyme concentrations.
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We assumed all microbial transporters are generic (so that they can capture all sub-
strates that the microbe can process) and are uniformly distributed over the microbe’s
cell surface. The total transporter abundance of a given microbe is scaled to the micro-
bial biomass with a constant z, which is set to 0.05, a number that falls in the middle
of values applied in other studies (Berg and Purcell, 1977; Maggi and Riley, 2009). We5

used these experiments to test two hypotheses: (i) the ECA kinetics is more robust
than the MM kinetics in approximating the EC solution; and (ii) only the ECA kinet-
ics is analytically tractable and sufficiently accurate to model microbial-mineral surface
interactions.

For the third set of experiments (E3; simulating litter decomposition), we tested10

whether the S3B3 model with different substrate kinetics can be calibrated to simu-
late the 77 month red pine litter decomposition data of Melillo et al. (1989). We first
calibrated model S3B3 with both the ECA and MM kinetics, and analyzed if the cali-
brated models can reproduce the (i) two-phase evolution of remaining organic matter,
(ii) increase of lignocellulose index (LCI) during decomposition, and (iii) reasonable15

fraction of microbial biomass with respect to the remaining organic matter. We then ran
the models with 9 different initial litter chemistries (Table 4) for a qualitative assess-
ment of the extrapolated predictability (based on observational data if available) of the
calibration. We were able to obtain some time series data for the MA site (Magill et al.,
1998), but failed to extract any useful time series data for the WI site (Aber et al., 1984)20

from the original literature or by contacting the authors. In addition, we noticed the orig-
inal data in Magill et al. (1998) indicated a rise of lignin during the decomposition for
some unexplained reasons (see their Fig. 4). We corrected this by replacing the unrea-
sonable lignin data (i.e., those higher than the initial lignin mass) with the initial lignin
mass (see Figure S1 for details).25

We solved all microbial models with the mass positive first order ordinary differential
equation integrator (Broekhuizen et al., 2008). This numerical solver deals with stiff and
discontinuous differential equations well and always ensures mass balance as long as
the elemental stoichiometry is properly formulated in the model. We ran all models half
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hourly, a time-step that is sufficiently fine to produce accurate results. For experiment
E2, the total runtime for model S3B1, S3B1M1, and S1B5 were set to 50 days, while
that for model S3B3 was 1500 days. All models in experiment E3 were run for the
length of the observations (80 months).

Calibrations for experiment E3 were performed by inverting the relevant parameters5

(see caption of Table 5 for descriptions) of the substrate uptake kinetics from fitting
the model (e.g., S3B3-ECA) output to the time series data of the remaining litter mass
and lignocellulose index (LCI) from Melillo et al. (1989). All posterior parameters were
sampled using the MCMC algorithm DREAM (Vrugt et al., 2008) with a uniform prior
for all the parameters and a cost function defined by10

Jcost = (8σLCI)
−1

k=8∑
k=1

∣∣LCIk −LCIECA,k

∣∣+ (17σMass)−1
k=17∑
k=1

∣∣rMass,k − rMass,ECA,k

∣∣ (32)

where LCIk is the k-th observation of lignocellulose index (of which there are 8 data
points) and rMass,k is the k-th observation of relative remaining organic matter biomass
(microbe plus litter; of which there are 17 data points). Both σLCI and σMass are set to
0.01. For the posterior parameters, the set that minimizes Jcost is defined as the modal15

(i.e., best fitting) parameter.

3 Results and discussion

3.1 E1: computing enzyme-substrate complexes for large networks

For the first set of experiments, we found that ECA kinetics performed better or as well
as MM kinetics in approximating the baseline EC solutions. When the substrate to en-20

zyme ratio was high (i.e., enzyme availability is limiting decomposition; green symbols
in Fig. 3), the ECA solutions agreed with the EC solutions with correlation coefficients
higher than 0.95 and root mean square errors less than 0.5 standard deviations (σ),
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except for 2 (out of 10) random replicates for case S(60)E(1)r(10) (i.e., 60 substrates,
1 enzyme, and a substrate to enzyme abundance ratio of 10; similar nomenclature is
used henceforth) and 3 (out of 10) replicates for case S(20)E(20)r(10), whose correla-
tion coefficients were still good (∼ 0.80) and the corresponding root mean square errors
were between 0.5σ and 1.5σ.5

MM kinetics also achieved good accuracy in approximating the EC solution with cor-
relation coefficients between 0.75 and 0.97, but in general higher root mean square
errors. For case S(10)E(60)r(10), MM kinetics only achieved a correlation coefficient of
0.80 and root mean square errors greater than 0.5σ, whereas ECA kinetics achieved
correlation coefficients of ∼ 0.99 and root mean square errors smaller than 0.3σ. How-10

ever, the worst approximations (in terms of root mean square error) by the MM kinetics
(i.e., two replicates, green diamond symbols, for S(60)E(1)r(10)) were better than those
from the ECA kinetics (for these two poorly simulated replicates).

Similarly contrasting results were found for the cases when the substrate to enzyme
ratio was one (purple symbols in Fig. 3): (i) the best approximation by the ECA kinetics15

was better than that using the MM kinetics and (ii) the MM kinetics resulted in 2 outliers
for the case S(20)E(20)r(1) with root mean square errors greater than 2σ and corre-
lation coefficients less than 0.90. ECA kinetics also produced 4 random replicates (2
for case S(10)E(60)r(1) and 2 for case S(20)E(20)r(1)) that had correlation coefficients
close to 0.8, but the root mean square error was less than 1.5σ.20

When substrate was limiting (blue symbols), both the ECA and MM kinetics
produced poor approximations (with more outliers) compared to the EC solutions.
Both approaches produced 4 outliers (2 for case S(10)E(60)r(0.01) and 2 for case
S(20)E(20)r(0.01)) with correlation coefficients between 0.70 and 0.80 and root mean
square errors greater than 1σ. The worst results (the 2 replicates for S(20)E(20)r(0.01))25

by MM kinetics were again worse than those by ECA kinetics.
When all sampling experiments were normalized together (cyan circles), we found

the ECA kinetics approximated better the baseline EC solution (with similar coefficients
of correlation but smaller root mean square errors) than the MM kinetics did. Therefore,
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we summarize that the ECA kinetics is superior to the MM kinetics in representing
large-size consumer-substrate networks.

3.2 E2: Application to simple microbial models

We found three (EC, ECA, ECA-ML) of the four different substrate kinetics led to al-
most identical model predictions for the S3B1 scenario over the 50 day time period5

(Figs. 5 and 6). The MM predictions deviated from the others slightly. However, the good
agreement between the MM kinetics and the other kinetic formulations is serendipi-
tous. The MM kinetics is poor in describing enzyme competition in the presence of
multi-substrates, which has been identified in several studies (e.g., Maggi and Riley,
2009; Druhan et al., 2012). We also replicated this behavior with an isotope-modeling10

example (see Supplement), where it was showed the MM kinetics has very poor pre-
dictability for multi-isotopic fractionations (Fig. S3), even though it predicted the bulk
substrate and microbial dynamics with acceptable accuracy (Fig. S2).

When mineral surface interactions were further included (in the S3B1 model) to form
the S3B1M1 model, we found that the ECA kinetics again predicted very similar time15

series compared to that from EC kinetics (Figs. 6 and 7), because both ECA and EC
are able to consistently represent the substrate competition by microbe and mineral
surfaces. However, both the ECA-ML and MM kinetics resulted in predictions substan-
tially different from the EC solution. The ECA-ML predicted a much faster turnover rate
of all three substrates because it did not include the inhibitory term due to the presence20

of consumers (which can be confirmed by comparing Eq. 13 to Eq. 21) and thence re-
sulted in a weaker substrate adsorption to the mineral surface. Further, throughout the
50 day period, the microbe grew in its biomass and consequently increased its quota
to capture substrate, whereas the mineral surface had a fixed quota, which together
with the growing microbe resulted in a faster turnover of the three substrates. In con-25

trast, MM kinetics favored more substrate adsorption to the mineral surface, because
(by comparing Eq. C1 to Eq. 13) it did not include the nonlinear competitive inhibition
on substrate uptake, or the inhibition due to the presence of the consumer. In addi-
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tion, the mineral adsorption sites (counted as adsorption capacity by the state variable
M1 in Table 1) is much more abundant than microbial transporters, which resulted in
a strong limitation on microbial substrate uptake. This substrate limitation (due to min-
eral surface adsorption) led to a much lower microbial growth, which then led to a great
underestimate of the substrate turnover rate (by the MM kinetics). Therefore, the re-5

duction in turnover of the three substrates in presence of mineral surface adsorption
leads us to conjecture that mineral adsorption (and consequently protection, which is
not considered here) is an important mechanism impacting organic matter degradation
with depth in the soil profile. Implementing the ECA or EC kinetics could thus poten-
tially avoid the ad hoc parameterization of soil organic matter (SOM) decomposition10

rate slowdown with depth as has been implemented in some vertically resolved SOM
models (e.g., Jenkinson and Coleman, 2008; Koven et al., 2013). In accordance with
the predicted substrate dynamics, we note that MM kinetics predicted the slowest in-
crease in LCI and fractional microbial C (with respect to total organic C including both
substrates and microbial biomass), while the ECA-ML kinetics predicted the fastest15

increase (Fig. 7). These findings lead us once again to state that the MM kinetics is
qualitatively not appropriate when the problem involves multiple substrates and multi-
ple consumers. In addition, as we will show in experiment E3, such deficiencies cannot
be remedied through calibration.

When five microbes are competing for a single substrate (S1B5), we found the three20

different substrate kinetics (now ECA-ML kinetics has the same functional form as MM
kinetics when there is only one substrate) made equally good predictions (Fig. 8). For
the worst case (according to the metrics defined in Eq. 3) among the 20 runs with
randomly generated parameters (see Table 2 for parameters being sampled), the pre-
diction by the MM kinetics fitted the EC predictions better than did the ECA kinetics25

(Fig. 8a–f). When summarized over the 20 runs (Fig. 8g, h), we found that the MM
kinetics is slightly superior for problems that are in the form of many microbes com-
peting for a single substrate. This result is consistent with model results such as that
in Bouskill et al. (2012), where the ammonia and nitrite oxidizers have a very week
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overlap in substrates. However, if one tries to use isotopic data to improve the param-
eterization of such models, the MM kinetics should be replaced with the ECA kinetics
or the EC kinetics.

For model S3B3, three of the four substrate kinetics (ECA-ML, ECA, and EC) made
very similar predictions (see Figs. 9 and 10). The predictions from the MM kinetics5

were completely different, both qualitatively and quantitatively. The MM kinetics pre-
dicted a gradual reduction in LCI (which stabilized at a constant value smaller than
the initial; Fig. 10b), whereas the other kinetic models predicted a gradual increase in
LCI, which stabilized at a greater (than the initial) value. In addition, the MM kinetics
predicted a much higher peak fractional total microbial biomass (compared to the total10

biomass accounting for both litter and microbes) than did the other substrate kinetics
(Fig. 10c). We note that ECA-ML, ECA, and EC all predicted similar temporal evolutions
of the remaining litter and litter LCI that qualitatively agreed with findings from litterbag
experiments (Fig. 10): (i) the litter decomposition has two distinct phases, where the
fist phase is fast and the second phase is much slower and (ii) the LCI increases along15

with the decomposition and finally stabilizes at a higher value than the initial state
(e.g., Melillo et al., 1989; Aber et al., 1990; Magill et al., 1998). This finding leads us
to assert that the explicit modeling of nonlinear substrate competition (as formulated
in EC, ECA, and ECA-ML) in microbial litter decomposition is important to represent
measured litter dynamics. Once this nonlinear competition is accounted for, the ob-20

served temporal evolution of LCI (and consequently lignin degradation) emerges from
the proposed model (EC and ECA). On the other hand, MM kinetics is not structured to
account for such nonlinear competition, thus one has to enforce an otherwise uncon-
strained lignin shielding effect on cellulose degradation (though we do not rule out its
possible existence) to make the model well behaved (e.g., Moorhead and Sinsabaugh,25

2006; Allison, 2012).
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3.3 E3: Simulating litter carbon decomposition

3.3.1 Calibrating model S3B3 with different substrate kinetics

After calibrating the S3B3-ECA model (model S3B3 implemented with ECA; same
nomenclature are used henceforth) to the 77 month red pine litterbag experiment data,
we found the posterior best-fit parameters led to predictions in good agreement with5

the measured time series of remaining litter and LCI (Fig. 11). The posterior micro-
bial biomass also seemed qualitatively reasonable, which stayed below 15 % of total
biomass (including both litter and microbial biomass). Observational data indicate the
fractional microbial biomass is relatively low, usually within 10 % of the total biomass
(Ladd et al., 1994; Dilly and Munch, 1996). Therefore, considering the parameterization10

equifinality due to insufficient observational data to constrain the relevant parameters
(e.g., Tang and Zhuang, 2008) and the qualitatively good agreement between posterior
simulations and the available data, we conclude that ECA kinetics is a better choice
that MM kinetics to represent litter decomposition dynamics.

We also ran the S3B3 model with the ECA-ML and EC kinetics using the same15

parameters obtained from S3B3-ECA model calibration and obtained almost identical
predictions (see red and cyan lines in Fig. 11). As a sensitivity test, we further intro-
duced the temperature effect on substrate uptake (labeled as ECA-T in Figs. 11 and 13)
by applying three different Q10 values (whose values are, respectively, 2.7, 1.5, and
1.7 based on Bayesian inversion on top of the default S3B3-ECA model calibration) to20

the three biomass yield rates. We found the predictions (blue lines in Fig. 11) changed
slightly compared to the simulations without accounting for temperature effects. Though
the Q10 values are quite uncertain because of data limitations, the result indicates that
temperature was not the single mechanism that led to the differences between mea-
surement and posterior model prediction. Other mechanisms such as leaching, nutrient25

dynamics, and moisture effects should be investigated in future studies to improve the
EC and ECA litter decomposition kinetics.
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Calibrating the model with the Michaeli Menten kinetics (S3B3-MM) to the 77 month
litterbag data failed to obtain reasonable posterior predictions of the litter decomposi-
tion dynamics (Fig. 12). A few parameter combinations led to qualitatively reasonable
predictions of the two-phase evolution of remaining biomass and the increasing then
stabilizing behavior of LCI. Yet the fractional microbial biomass varied wildly. Many pa-5

rameter combinations predicted the total biomass as microbial-C dominated (almost
100 %) during the second phase of litter decomposition. We also found the model
S3B3-MM is much more sensitive to the parameters than the models implementing
ECA-ML, ECA, and EC kinetics. Therefore, we conclude that MM kinetics is not suitable
for modeling microbial litter decomposition and SOM dynamics, since these problems10

always involve multiple substrates and multiple microbes.

3.3.2 The interaction between litter chemistry and microbial diversity

Distinct shifts in microbial community structure were observed in the posterior model
predictions for the 77 month litter decomposition experiment (Figs. 13 and S4). While
we had no measurements from this experiment to assess whether such predictions are15

realistic, some other studies (e.g. Keeler et al., 2009; Wickings et al., 2012) indicate
such microbial community structure shifts often occur in long-term incubation experi-
ments. For instance, Wickings et al. (2012) observed significant changes in exoenzyme
activities and fungal-bacterial ratio in their long-term (730 days) litter decomposition ex-
periment. Considering that fungi often dominate lignin decomposition (Osono, 2007),20

our predicted dominance of the fungi-like microbe in the second phase of the 77 month
decomposition is qualitatively reasonable. Nevertheless, a comprehensive assessment
should use a model that has a complete representation of the relevant nutrient dy-
namics (e.g., N and phosphorus) and such a model should be compared to detailed
observational characterization of litter chemistry and microbial community structure.25

However, detailed observational characterization of both substrate and microbial com-
munity structure is lacking in long-term experiments that cover temporal scales varying
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from diurnal cycles to multiple years. These types of observations are critical to the
development of the types of models discussed here.

Considering each member of the posterior ensemble simulation as a single red
pine litter decomposition experiment with a different microbial community, our results
(Figs. 11 and 13) indicate the evolution of litter chemistry is strongly regulated by mi-5

crobial community structure. In addition, parameterization equifinality (see gray lines in
Figs. 11 and 13) indicate different microbial communities will sometimes lead to similar
litter chemistry after a relatively long time. The latter is manifested as a weak conver-
gence of litter chemistry in terms of LCI throughout the 77 month period (Fig. 11b; also
see the review about measurements in Melillo et al., 1989). Yet we found that the final10

seemingly constant LCI is not a single value but rather a range between 0.6 and 0.8 for
the red pine litter being modeled here.

When we applied the model S3B3-ECA using the best-fit parameters (Table 5) from
the Bayesian calibration to 9 different litter types (Table 4), the results (Fig. 14) indicated
a clear dependence of litter decomposition on initial litter chemistry. The predictions15

indicate all 9 litters were degraded in two phases, and their LCIs rose asymptotically
to different final constant values. Further, the final constant LCI is a function of both
its initial value and the microbial community diversity and dynamics. For instance, the
red maple started with a medium initial LCI (0.32) but reached a final value of 0.68, the
highest among the 9 litters (Table 4). While we failed to obtain sufficient data to evaluate20

the 9 predictions, the evaluation of the 4 litter types in the study by Magill et al. (1998)
indicated our model predictions were qualitatively reasonable (Fig. 15). We also applied
the Michaelis Mentin kinetics model (S3B3-MM) with its best-fit parameter (Table S2)
to the 9 litter types; its prediction was again poor (see Fig. S5).

Therefore, we summarize that litter decomposition is co-regulated by both the initial25

litter chemistry and microbial community structure and dynamics. Our prediction sup-
ports the conclusion drawn in Wickings et al. (2012) and challenges the assumptions of
constant final LCI and constant microbial community structure in many existing biogeo-
chemical models, e.g., the GDM model (Moorhead and Sinsabaugh, 2006) which used
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a constant final LCI, and models such as TEM (McGuire et al., 1997), CENTURY (Par-
ton et al., 1988), and Roth-C (Jenkinson and Coleman, 2008) which implicitly assumed
the relevant microbial community structures are constant.

3.3.3 The emergent lignin decomposition dynamics

Lignin dynamics play a critical role in litter decomposition (Berg et al., 1982; Melillo5

et al., 1982). The physically reasonable prediction by model S3B3-ECA provided us
with some new insights on lignin decomposition. We found (Fig. 16) that lignin decom-
position does not follow the conceptual model as proposed by Berg and Staaf (1980),
which states that no lignin will be degraded until it reaches a threshold concentration
(with respect to the total litter). Rather, our predictions support the conceptual model of10

Klotzbucher et al. (2011), which states that lignin decomposition depends on the avail-
ability of easily degradable labile carbon. However, our results add further insights that,
besides litter chemistry, degradation is also regulated by microbial community struc-
ture. When different groups of microbes are degrading the same type of litter, the litter
chemistry could evolve differently (e.g., Fig. 11).15

3.4 Potential improvements to the EC and ECA substrate kinetics for modeling
microbial systems

Substrate uptake is a process regulated by many biotic and abiotic factors. For soil mi-
crobial systems, relevant abiotic factors are soil moisture, temperature, mineralogy, ag-
gregation, and redox potentials (e.g., Davidson and Janssens, 2006). As we explained20

in Sect. 2.1, EC kinetics allows a direct and consistent description of these abiotic pro-
cesses using the existing knowledge of reactive transport modeling (Jennings et al.,
1982; Jin and Bethke, 2007). Incorporating these factors within the ECA kinetics is
more difficult. However, besides the diffusion limitation (which partly accounts for the
soil moisture effect as we discussed in Sect. 2.4), accounting for the temperature ef-25

fect in ECA kinetics is straightforward by recognizing that all parameters in Eq. (4) are
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temperature dependent. For instance, by using Eyring’s transition state theory (Eyring,
1935a, b), it can be shown that KS,i j ∝ exp

(
−∆H/RT

)
, where ∆H (J mol−1) is an acti-

vation energy that should be deducible from measurements (as was done in Davidson
et al. (2012), though there they assumed KS,i j was a linear function of temperature).
Determining the activation energies of k+i j ,1, k−i j ,1, and k+i j ,2 could be challenging, but we5

note that it has been done for inorganic chemistry kinetics (e.g., Bonner et al., 1935).
By combining these ideas with the theory of half reactions (e.g., McCarty, 2007) and
assuming other abiotic factors such as soil aggregation and thermal degradation can
be represented by chemical kinetics, one could (and we hope to in future work) con-
struct a thermodynamically-based model of microbial organic matter decomposition.10

Other biological factors, such as exoenzyme abundance and microbial transporters,
affect the substrate uptake process indirectly by changing the abundance of consumers
in the consumer-substrate network. Developing mechanistic representations of these
factors is an important area of study (Allison, 2012; Kooijman and Troost, 2007) that
we will also address in follow-on studies with the EC and ECA kinetics based model.15

3.5 Potential applications to different network systems

Because EC kinetics only relies on the premise that the equilibration of the consumer-
substrate complexes (between their formation and degradation) is much faster than
other metabolic processes, it can in principle be applied to arbitrary food-web struc-
tures (e.g., Lindeman, 1942) and protein–protein interaction networks (Ciliberto et al.,20

2007). We note, however, that a model implemented with the EC kinetics may become
computationally expensive as the problem size increases. For such cases, proper nu-
merical preconditioning becomes necessary.

Compared to EC kinetics, the approximate ECA kinetics is applicable to a smaller
scope of problems, constrained by the condition that any element in the network be ei-25

ther a substrate or consumer, but not both. Still, the ECA kinetics is much more general
than other existing formulations used for predator-prey systems (Murdoch, 1973; Koen-
Alonso, 2007) and is computationally very efficient. For protein–protein interaction net-
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works, one feasible application example is the phosphorylation–dephosphorylation cy-
cle analyzed by Goldbeter and Koshland (1981), which lends itself to be solved by ECA
kinetics under the tQSSA (compare their Eqs. 1 and 2 with the form of Eq. 4).

4 Conclusions

In this study, we proposed that an equilibrium chemistry (EC) formulation could be5

used to predict the dynamics of consumer-substrate complexes involved in an arbitrary
consumer-substrate network. When the given consumer-substrate network satisfies
the condition that any element of the network is either consumer or substrate but not
both, we obtained a first-order accurate approximation to EC (termed ECA). Both the
EC and ECA kinetics allow a simultaneous and consistent treatment of biotic and abi-10

otic interactions in microbial systems (though the ECA kinetics is more limited), which
cannot be achieved with the classical MM kinetics or with other existing MM kinetics
based extensions. With a few examples, we demonstrated that if a network involves
multiple substrates and consumers, direct application of the classical MM kinetics is
inaccurate. We further showed a carbon-only model implemented with the ECA kinet-15

ics predicted litter decomposition dynamics reasonably. These predictions indicated
that litter decomposition is co-regulated by litter chemistry and microbial community
structure and dynamics. We hope our results can help develop a benchmark model for
microbially-mediated organic matter decomposition in terrestrial and other ecosystems
and stimulate applications in other fields involving consumer-substrate networks.20
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Appendix A

Derivation of Eq. (13)

In this section we present the derivation of Eq. (13). From the mass balance constraint
to substrate Si (Eq. 10), one has

Si =
Si ,T

1+
∑k=J
k=1

Ek
KS,ik

(A1)5

Similarly (from Eq. 2.2), one has,

Ej =
Ei ,T

1+
∑k=I
k=1

Sk
KS,kj

(A2)

Substituting Eqs. (A1) and (A2) into Eq. (6), one obtains:

Ci j =
Si ,TEj ,T

KS,i j

(
1+
∑k=J
k=1

Ek
KS,ik

)(
1+
∑k=I
k=1

Sk
KS,kj

) (A3)

Now apply the perturbation theory (e.g., Bender and Orzag, 1999; Tang et al., 2007) to10

Eq. (A3), in which we assume:

Ci j = εCi j ,1 +ε
2Ci j ,2 + · · · (A4-a)

Ej = Ej ,0 +εEj ,1 +ε
2Ej ,2 + · · · (A4-b)

Si = Si ,0 +εSi ,1 +ε
2Si ,2 + · · · (A4-c)

15

where ε is a very small number.
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Expanding Eq. (5), and keeping the first two orders of ε, gives:

ε : Ci j ,1

(
1+

k=J∑
k=1

Ek,0

KS,ik
+
k=I∑
k=1

Sk,0

KS,kj

)
=
Si ,TEj ,T
εKS,i j

(A5-a)

ε2 : Ci j ,2

(
1+

k=J∑
k=1

Ek,0

KS,ik
+
k=I∑
k=1

Sk,0

KS,kj

)

+Ci j ,1

k=J∑
k=1

Ek,1

KS,ik
+
k=I∑
k=1

Sk,1

KS,kj
+
m=I ,l=J∑
m=1,l=1

KS,nlCml ,1
KS,i lKS,mj

 = 0 (A5-b)

5

where the third subscript on Ci j indicates the associated order of ε. Substituting
Eq. (A5) into Eq. (A3) gives:

Ci j ,1 ≈
Si ,TEj ,T

εKS,i j

(
1+
∑k=J
k=1

Ek,0

KS,ik
+
∑k=I
k=1

Sk,0

KS,kj

) (A6-a)

Ci j ,2 =
Ci j ,1

KS,i j

(
1+
∑k=J
k=1

Ek,0

KS,ik
+
∑k=I
k=1

Sk,0

KS,kj

) n=I ,l=J∑
n=1,l=1

Cnl ,1KS,i j

(
KS,i l +KS,nj −KS,nl

KS,i lKS,nj

)
(A6-b)

10

Therefore, by using Ej ,T = Ej ,0 and Si ,T = Si ,0 at the zero order approximation, Eq. (A6-
a) is equivalent to Eq. (13) in the main text. The derivation of Eq. (A6-b) is given in the
Supplement.

Because of the many unspecified parameters (prior a specific application), we were
not able to identify a best estimate of the condition when Eq. (A6-a) is exactly first order15
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accurate. However, from Eq. (A6-b), we obtain a crude condition(
KS,i j

Si ,0
+
k=J∑
k=1

KS,i j

KS,ik

Ek,0

Si ,0
+
k=I∑
k=1

KS,i j

KS,kj

Sk,0

Si ,0

)
(A7)(

KS,i j

Ej ,0
+
k=J∑
k=1

KS,i j

KS,ik

Ek,0

Ej ,0
+
k=I∑
k=1

KS,i j

KS,kj

Sk,0

Ej ,0

)
� 1 (A8)

Condition Eq. (A7) holds if Si ,0 � Ej ,0 or Si ,0 � Ej ,0. Even if Si ,0 ≈ Ej ,0, Eq. (A7) may5

still hold because of the many possible parameter combinations in a complicated reac-
tion network.

While it is cumbersome to verify Eq. (A6) for all combinations of substrate and con-
sumer, under the single-substrate and single-consumer condition, we have

C11 = εC11,1 +ε
2C11,2 =

S1,TE1,T

KS,11 +S1,T +E1,T

1+
S1,TE1,T(

KS,11 +S1,T +E1,T
)2
 (A9)10

which is equivalent to Eq. (3) in Cha and Cha (1965) when truncated to second order
accuracy.

Appendix B

An alternate analytic approximation

Substituting the mass balance relationships Eq. (A1) and Eq. (A2) into Eq. (6), one15

has:(
Si ,T −

k=J∑
k=1

Cik

)(
Ej ,T −

k=I∑
k=1

Ckj

)
= KS,i jCi j (B1)
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Then by expanding Eq. (B1) and ignoring quadratic terms, one obtains a set of linear
equations:

KS,i jCi j +Si ,T

k=J∑
k=1

Cik +Ej ,T

k=I∑
k=1

Ckj = Si ,TEj ,T (B2)

where we again used the zero order approximation Ej ,T = Ej ,0 and Si ,T = Si ,0.
Since we have not been able to find an analytical solution to Eq. (B2), we attempted5

to solve it using existing linear algebra packages. This effort turned out to be numer-
ically very difficult, and often resulted in unrealistic and negative complex concentra-
tions. However, using results derived by DeBoer and Perelson (1995), we developed
an approximate solution:

Ci j =
Si ,TEj ,T

KS,i j +
∑k=I
k=1Sk,T

Ej ,T+KS,i j

Ej ,T+KS,kj
+
∑k=J
k=1Ek,T

Si ,T+KS,i j

Si ,T+KS,ik

(B3)10

which satisfies Eq. (B2) exactly when I = 1 or J = 1. We evaluated (B3) with random
sampling tests, and found it was generally inferior to Eq. (13) (results not shown).

Appendix C

The MM kinetics based approximation to the EC solution

The MM kinetics based representation of the enzyme-substrate complex Ci j is15

Ci j =
Si ,TEj ,T
KS,i j +Si ,T

(C1)
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The solution Eq. (C1) is then scaled linearly to satisfy the mass constraint

k=I∑
k=1

Ckj ≤ Ej ,T, j = 1, . . .,J (C2-a)

k=J∑
k=1

Cik ≤ Si ,T, i = 1, . . ., I (C2-b)

We point out that Eqs. (C2) have been implemented differently from other studies, e.g.,5

Moorhead and Sinsabaugh (2006; GDM), Riley et al. (2011; CLM4Me), and Allison
(2012; DEMENT). Those studies imposed the constraint on total substrate flux within
a single time step rather than on the overall enzyme-substrate complexes. It is only with
Eqs. (C2) that MM and ECA-ML kinetics were able to model the adsorption surface
effect on substrate dynamics, but they were less accurate than the ECA kinetics as we10

have demonstrated in the main text (see discussions on scenario S3B1M1 in Sect. 3.2).

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/10/10615/2013/
bgd-10-10615-2013-supplement.pdf.
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Table 1. Parameter values for microbial models S3B1 and S3B1M1. The parameter vectors are
presented in the form (KS,i j ,k

+
i j ,2,µi j ), whose units are, respectively, mgCdm−3,d−1, and none.

The initial microbial biomass is defined in the parentheses after B1, whose unit is mgCdm−3.
The mineral surface is characterized with the Langmuir dissociation parameter (equivalently
KS,i j ) and the maximum adsorption capacity (in the parentheses following M1), whose units

are, respectively, mgCdm−3 and mgCdm−3. For both models, we used a microbial respiration
rate 0.03d−1. The microbial parameters were randomly specified based on prior knowledge
from Wang et al. (2012), and the mineral surface parameters were specified for Alfisol based
on Mayes et al. (2012).

S1(30) S2(100) S3(90)

B1(0.1) (1,48,0.5) (10,48,0.3) (50,48,0.1)
M1(1094) (21.2,0,0) (21.2,0,0) (21.2,0,0)
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Table 2. Parameter ranges for microbial model S1B5. The parameter vectors are presented in
the form (KS,i j ,k

+
i j ,2,µi j ), whose units are, respectively, mgCdm−3,d−1, and none. Numbers in

the parentheses following the state variables are their initial values, whose units are mgCdm−3.
All five microbes used a respiration rate 0.005 d−1. The maximum and minimum parameter
values were specified based on Wang et al. (2012).

S1(300)
Minimum values Maximum values

B1(1) (1,1,0.4) (100,10,0.4)
B2(1) (1,1,0.4) (100,10,0.4)
B3(1) (1,1,0.4) (100,10,0.4)
B4(1) (1,1,0.4) (100,10,0.4)
B5(1) (1,1,0.4) (100,10,0.4)
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Table 3. Prior parameters for microbial model S3B3. The parameter vectors are presented

in the form
(
KS,i j ,k

+
i j ,2,µi j

)
, whose units are, respectively, gCd−1 and none. All values are

adapted from Moorhead and Sinsabugh (2006). All three respiratory coefficients (i.e. γj , j =
1,2,3 as defined in Eq. (30) are set to 0.03 d−1. Numbers in the parentheses following the state
variables are their initial values, whose units are gC.

S1 S2 S3

B1 (0.33) (1,1,0.5) (100,1,0.3) (5000,1,0.1)
B2 (0.33) (1.0,0.8,0.5) (10,0.8,0.3) (1000,0.8,0.1)
B3 (0.33) (1.0,0.4,0.5) (10,0.4,0.3) (100,0.4,0.1)
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Table 4. Characteristics of initial litter chemistry for the data in litterbag decomposition field
studies in Wisconsin (WI) and Massachusetts (MA). The table is organized based on Table 3 in
Moorhead and Sinsabaugh (2006), who obtained data from Aber et al. (1984) and Magill et al.
(1998). The final LCI is model predicted (see Sect. 3.3.2 for details). We have also extracted
time series data from the Magill et al. (1998) study for model assessment (Figs. 15 and S1).

Litter type, by site Labile (%) Holocellulose (%) Lignin (%) Initial LCI Final LCI

Wisconsin (WI)

Sugar maple 44.8 43.1 12.1 0.22 0.55
Aspen 31.1 47.5 21.4 0.31 0.56
White oak 32.4 47.4 20.2 0.30 0.56
White pine 32.8 44.7 22.5 0.33 0.59
Red oak 30.0 45.2 24.8 0.35 0.59

Massachusetts (MA)

Red pine 35.9 38.6 25.5 0.40 0.67
Red maple 47.7 35.4 16.9 0.32 0.68
Black oak 35.0 39.6 25.4 0.39 0.66
Yellow birch 43.4 40.3 16.3 0.29 0.62
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Table 5. Best fitting parameters for model S3B3-ECA by optimizing the simulation outputs to the
77 month red pine litter decomposition experiment data in Melillo et al. (1989). The parameter
vectors are presented in the form (KS,i j ,k

+
i j ,2,µi j ), whose units are, respectively, gCd−1, and

none. The respiratory coefficients (i.e. γj , j = 1,2,3 as defined in Eq. 30 of the three microbes

are, respectively), set to 0.01, 005, and 0.001 d−1. Numbers in the parentheses following the
state variables are their initial values, whose units are gC. In doing the calibration, we assumed
(i) KS,1j , j = 1,2,3 are same for all three microbes; (ii) KS,22 = KS,23; (iii) for microbe Bj , k

+
i j ,2, i =

1,2,3 are same for all three substrates. By further fixing µi j to the values in the parentheses,
we effectively had totally 9 parameters in the calibration.

S1(359) S2(386) S3(255)

B1 (4.94) (2.22,0.6027,0.5) (96.4,0.6027,0.3) (283.8,0.6027,0.1)
B2 (4.22) (2.22,0.3605,0.5) (185.2,0.3605,0.3) (5216.1,0.3605,0.1)
B3 (2.42) (2.22,0.2061,0.5) (185.2,0.2061,0.3) (219.5,0.2061,0.1)
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Table A1. Nomenclature.

Symbol Definition Unit

Bj Biomass of microbe j molCm−3 or gC
C,Ci j Enzyme-substrate complex molCm−3

Ci j ,1,Ci j ,2 Scaled first and second order accurate terms of complex Ci j molCm−3

Di Diffusivity of substrate Si in water m2 s−1

E ,Ej Free enzyme abundance mol m−3

Ej ,0,Ej ,1,Ej ,2 Zero, first, and second order accurate terms of enzyme Ej molCm−3

∆H Activation energy Jmol−1

Ik,T Total abundance of inhibitor k molm−3

Jcost Cost function unitless
k+

1 ,k+
i j ,1 Forward reaction coefficients m3 mol−1 s−1

k−
1 ,k−

i j ,1 Backward reaction coefficients s−1

k+
2 ,k+

i j ,2 Forward reaction coefficients s−1

KS,KS,i j , K̂S,i1, K̃S,i j Substrate affinity coefficients molCm−3

KI,i j ,KI,i jk Inhibitory coefficients molCm−3

nj Cell number density of microbe j cells m−3

Pi j Product from degradation of complex Ci j molCm−3 or gC
rc,j Mean cell size of microbe j m
R Universal gas constant J K−1 mol−1

S,Si , S̃i Free substrate abundance molCm−3 or gC
Si ,0,Si ,1 Zero, first, and second order accurate terms of substrate Si molm−3

Si ,T Total substrate abundance mol m−3

T Temperature K
v Substrate uptake rate molm−3 s−1

Vmax Maximum substrate uptake rate molm−3 s−1

αk Active fraction of the enzyme k unitless
ε Small number unitless
µi j Biomass yield when microbe Bj feeds on Si unitless
ψj Area-based transporter density of cell j molm−2

σLIC Standard deviation of lignocellulose index unitless
σMass Standard deviation of the remaining organic biomass unitless
γj Respiration rate of microbe j h−1 or d−1

ΦD Substrate flux molm−3 s−1

ΦE Changing rate of new enzymes (transporters) molm−3 s−1
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	   E1 	   ! 	   Ej!1 	   Ej 	   Ej+1 	   ! 	   EJ 	  

S1 	   KS,11 	   ! 	   KS,1, j!1 	   KS,1 j 	   KS,1, j+1 	   ! 	   KS,1J 	  

! 	   ! 	   ! 	   ! 	   ! 	   ! 	   ! 	   ! 	  

Si!1 	   KS,i!1,1 	   ! 	   KS,i!1, j!1 	   KS,i!1, j 	   KS,i!1, j+1 	   ! 	   KS,i!1,J 	  

Si 	   KS,i1 	   ! 	   KS,i, j!1 	   KS,ij 	   KS,i, j+1 	   ! 	   KS,iJ 	  

Si+1 	   KS,i+1,1 	   ! 	   KS,i+1, j!1 	   KS,i+1, j 	   KS,i+1, j+1 	   ! 	   KS,i+1,J 	  

! 	   ! 	   ! 	   ! 	   ! 	   ! 	   ! 	   ! 	  

SI 	   KS,I1 	   ! 	   KS,I , j!1 	   KS,Ij 	   KS,I , j+1 	   ! 	   KS,IJ 	  

	  
Fig. 1. A matrix-based representation of the parameter configuration for the ECA substrate
kinetics (Eq. 13).
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!Si +Ej!k"ij ,1

k+ij ,1
!SiEj # Pij +Ej

!
Si

!
!E

!D

Fig. 2. Diagram of the revised substrate uptake process, which includes diffusive substrate flux
(between the external environment and near cell environment) and new enzyme production
ΦE . Here Si is any environmental substrate abundance, S̃i is the corresponding local (close to
the transporter) substrate abundance, and Pi j is the assimilated product from the processing of
Si by enzyme Ej .
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Overall

Fig. 3. A Taylor-diagram based summary of the random sampling experiment (E1) that com-
pared the ability of the ECA and the MM kinetics to approximate different enzyme-substrate
networks simulated by the EC kinetics. Each symbol has 10 random replicates. The values in
the parentheses indicate the number of substrates or enzymes. The nomenclature S(x)E (y)r(z)
indicate a network of x substrates, y enzymes, and a substrate to enzyme abundance ratio of
z.
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Fig. 4. Time series of the relevant state variables simulated from the applications of the four
different substrates uptake kinetics to microbial model S3B1.
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Fig. 5. Time series of state variable ratios simulated from the application of the four different
substrates uptake kinetics to microbial model S3B1.
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Fig. 6. Time series of the relevant state variables simulated from the applications of the four
different substrate uptake kinetics to microbial model S3B1M1.
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Fig. 7. Time series of state variable ratios simulated from the application of the four different
substrates uptake kinetics to microbial model S3B1M1.
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Fig. 9. Time series of relevant state variables simulated from the application of different sub-
strate kinetics to microbial model S3B3.
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Fig. 10. Time series of state variable ratios simulated from the application of the four different
substrates uptake kinetics to microbial model S3B3.
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Fig. 11. Posterior simulations from calibrating model S3B3-ECA to the red pine litter decom-
position experimental data in Melillo et al. (1989). ECA-Ens indicates the posterior ensemble
simulations, and ECA-T indicates the additional temperature impact on top of ECA (i.e., the
best fitting posterior simulation). The best fitting kinetic parameters for ECA, EC, ECA-ML, and
ECA-T are in Table 5. See text for further details.
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Fig. 12. Posterior S3B3-MM simulations by calibrating the model to the 77 month red pine
litterbag experimental data in Melillo et al. (1989). MM-Ens indicates the posterior ensemble
simulations. The best fitting posterior simulation is in red, whose corresponding parameters in
Table S2.
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Fig. 13. Simulated time series of microbial abundances from using the best-fit parameters (cal-
ibrated with S3B3-ECA) in Table 5. The four models ECA, ECA-ML, EC, and ECA-T used the
same kinetic parameters. The ECA-Ens simulations correspond to the ensemble simulations in
Fig. 11.
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Fig. 14. Model (S3B3-ECA) predicted temporal evolution of litter decomposition dynamics for
the 9 different litters in Table 4. The used parameters are in Table 5.
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Fig. 15. Evaluation of model (S3B3-ECA) prediction using Magill et al. (1998)’s litterbag experi-
ment data: (a) remaining litter biomass and (b) litter lignocellulose index (LCI). The original and
corrected lignin data are in Figure S1.
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Fig. 16. Model (S3B3-ECA) predicted temporal patterns of total litter and lignin degradation for
the 9 different litter types.
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